Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene
نویسندگان
چکیده
RATIONALE Hereditary spastic paraplegia (HSP) is a heterogeneous group of diseases little known in clinical practice due to its low prevalence, slow progression, and difficult diagnosis. This results in an underestimation of HSP leading to belated diagnosis and management. In depth diagnosis is based on clinical presentation and identification of genomic mutations. We describe the clinical presentation and pathogeny of HSP through a report of a case due to a novel mutation of the REEP1 gene (SPG31). PATIENT CONCERNS A 64-year-old woman presented gait disturbances due to spasticity of the lower limbs progressing since her third decade. Previous investigations failed to find any cause. INTERVENTIONS DNA analysis was performed to search for HSP causing mutations. DIAGNOSES A novel heterozygote mutation (c.595 + 1G>A) of the REEP1 gene, within the splice site of intron 6, was discovered. This nucleotide change causes exon 6 skipping leading to frame shift and a truncated transcript identified by complementary DNA sequencing of reverse transcription polymerase chain reaction products. OUTCOMES REEP1 is a known protein predominantly located in the upper motor neurons. Mutation of REEP1 primary affects the longest axons explaining predominance of pyramidal syndrome on lower limbs. LESSONS Slow progressive pyramidal syndrome of the lower limbs should elicit a diagnosis of HSP. We describe a novel mutation of the REEP1 gene causing HSP. Pathogeny is based on resulting abnormal REEP1 protein which is involved in the development of longest axons constituting the corticospinal tracts.
منابع مشابه
REEPing the benefits of an animal model of hereditary spastic paraplegia.
The hereditary spastic paraplegias (HSPs) are characterized by spasticity of the leg muscles due to axonal degeneration of corticospinal neurons. Beetz et al. report that the core motor phenotype and axonal pathology of HSPs are recapitulated in mice lacking the HSP-associated gene Reep1. REEP1 is shown to regulate ER structure in motor cortex neurons. The Reep1 knockout mouse should be a very ...
متن کاملA spastic paraplegia mouse model reveals REEP1-dependent ER shaping.
Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous rec...
متن کاملREEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31.
Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for REEP1 mutations and copy number variations. We identified 13 novel and 2 known REEP1 mutations in 16 familial and sporadic patients by direc...
متن کاملDe novo REEP2 missense mutation in pure hereditary spastic paraplegia
Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inh...
متن کاملMutation analysis of SPAST, ATL1, and REEP1 in Korean Patients with Hereditary Spastic Paraplegia
BACKGROUND AND PURPOSE Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders that are characterized by progressive spasticity and weakness of the lower limbs. Mutations in the spastin gene (SPAST) are the most common causes of HSP, accounting for 40-67% of autosomal dominant HSP (AD-HSP) and 12-18% of sporadic cases. Mutations in the atlastin-1 ...
متن کامل